栅格数据的四叉树编码

指针四叉树代码如下(最简单的递归实现):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#include<bits/stdc++.h>
using namespace std;
const int maxn = 64 + 5;
char g[maxn][maxn];
int n, k[10] = { 1 };
vector<int>a;

int solve_g(int l,int r,int u,int d,int cur,int p){
int w = 1, b = 1;
for(int i = u; i <= d; i++){
if(!w && !b) break;
for(int j = l; j <= r; j++){
if(g[i][j] == '1') w = 0;
else b = 0;
}
}
if(w || b) return b ? cur : -1;
int x = (l+r)/2, y = (u+d)/2, t;
if((t = solve_g(l,x,u,y,cur + k[p],p+1)) > -1) a.push_back(t);
if((t = solve_g(x+1,r,u,y,cur + 2*k[p],p+1)) > -1) a.push_back(t);
if((t = solve_g(l,x,y+1,d,cur + 3*k[p],p+1)) > -1) a.push_back(t);
if((t = solve_g(x+1,r,y+1,d,cur + 4*k[p],p+1)) > -1) a.push_back(t);
return -1;
}

void solve_a(int a){
int l = 0, r = n-1, u = 0, d = n-1;
while(a){
int x = (l + r) / 2, y = (u + d) / 2;
switch(a % 5){
case 1: r = x; d = y; break;
case 2: l = x + 1; d = y; break;
case 3: r = x; u = y + 1; break;
case 4: l = x + 1; u = y + 1; break;
}
a /= 5;
}
for(int i = u; i <= d; i++){
for(int j = l; j <= r; j++){
g[i][j] = '*';
}
}
}

int main(){
// freopen("data.in","r",stdin);
// freopen("data.out","w",stdout);
for(int i = 1; i<10; ++i) k[i] = k[i-1]*5;
int cnt = 0,t;
while(scanf("%d",&n),n){
if(cnt) printf("\n");
printf("Image %d\n",++cnt);
a.clear();
memset(g,0,sizeof(g));
if(n > 0){
getchar();
for(int i = 0; i<n; ++i) fgets(g[i],maxn-1,stdin);
if((t = solve_g(0,n-1,0,n-1,0,0)) > -1) a.push_back(t);
sort(a.begin(),a.end());
int len = a.size();
for(int i = 0; i < len;){
printf("%d",a[i++]);
if(i%12 == 0 || i == len) printf("\n");
else printf(" ");
}
printf("Total number of black nodes = %d\n",len);
}
else{
n = -n;
while(1){
scanf("%d",&t);
if(t < 0) break;
solve_a(t);
}
for(int i = 0; i < n; ++i){
for(int j = 0; j<n; ++j)
if(!g[i][j]) g[i][j] = '.';
puts(g[i]);
}
}
}
return 0;
}

线性四叉树(Morton码):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#include<bits/stdc++.h>
using namespace std;
const int maxn = 10000 + 5;
const int n = 15;
char graph[maxn][maxn];
char zip_graph[maxn*maxn];
int zip_record[maxn*maxn];

int Morton_encode(int i,int j){
int code = 0;
for(int k = 0;k < n;k++){
code |= ((i>>k)&1)<<(k*2);
code |= ((j>>k)&1)<<(k*2+1);
}
return code;
}
int build_tree(int l){
for(int i = 0;i < l;i++){
for(int j = 0;j < l;j++){
zip_graph[Morton_encode(j,i)] = graph[i][j];
}
}
int t = l*l;
int i = 0,j = 0;
while(i < t){
int k = i+1;
while(zip_graph[i] == zip_graph[k]) k++;
zip_record[j++] = i;
i = k;
}
return j;
}
int main(){

freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
scanf("%s",graph[0]);
int l = strlen(graph[0]);
for(int i = 1;i < l;i++){
scanf("%s",graph[i]);
}
int n = build_tree(l);
for(int i = 0;i < n;i++) printf("%d\t",zip_record[i]);
putchar('\n');
for(int i = 0;i < n;i++) printf("%c\t",zip_graph[zip_record[i]]);

return 0;
}

Copyright © 2019 - 2024 Jingwang Li

Powered by Hexo | Theme Hiker