单纯形法的C++实现

大M法代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
// Input data:
// 3 5 2
// -3 0 1 0 0
// 1 1 1 1 0 0 0 4
// -2 1 -1 0 -1 1 0 1
// 0 3 1 0 0 0 1 9
#include<bits/stdc++.h>
using namespace std;
const int M = 1<<20;
const int maxn = 10000;
//m:num of constraints
//n:num of varibles of the standard form
//n2:num of artifical varibles
int m,n,n2;
int x,y; //the location of the main element
double w[maxn]; //each varible's weight
int bv[maxn]; //the base varibles
double C[maxn][maxn]; //the coefficient matrix
double check[maxn]; //the check numbers
bool optimum_check(){
bool mark = true;
double Max = -1,Min = maxn;
for(int i = 0;i < n;i++){
int t = w[i];
for(int j = 0;j < m;j++) t -= w[bv[j]]*C[j][i];
check[i] = t;
if(check[i] > 0){
mark = false;
if(check[i] > Max){
Max = check[i];
y = i;
}
}
}
for(int i = 0;i < m;i++){
if(C[i][y] < 0 || abs(C[i][y] - 0) < 1e-10) continue;
if(C[i][n]/C[i][y] <= Min){
Min = C[i][n]/C[i][y];
x = i;
}
}
return mark;
}
int main(){
freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
cin>>m>>n>>n2;
for(int i = 0;i < n;i++) cin>>w[i];
for(int i = n;i < n + n2;i++) w[i] = -M;
n += n2;
for(int i = 0;i < m;i++){
for(int j = 0;j < n + 1;j++) cin>>C[i][j];
}
int cnt = 0; //the num of base varibles that had been found
memset(bv,-1,sizeof(bv));
for(int i = 0;i < n && cnt < m;i++){
if(C[cnt][i] != 1) continue;
int mark = 1;
for(int j = 0;j < m;j++){
if(j == cnt) continue;
if(C[i][j] != 0) mark = 0;
}
if(mark) bv[cnt++] = i;
}
while(!optimum_check()){
double e = C[x][y];
for(int i = 0;i < n + 1;i++) C[x][i] /= e;
for(int i = 0;i < m;i++){
if(i == x || !C[i][y]) continue;
double t = C[i][y]/C[x][y];
for(int j = 0;j < n + 1;j++) C[i][j] -= C[x][j]*t;
}
bv[x] = y;
}
double optimum_value = 0,solu[n] = {0};
for(int i = 0;i < m;i++) solu[bv[i]] = C[i][n];
for(int i = 0;i < n;i++) optimum_value += solu[i]*w[i];
printf("The optimum value is %.2lf\n",optimum_value);
printf("The solution is :\n");
for(int i = 0;i < n;i++){
printf("x%d = %.2lf\n",i+1,solu[i]);
}
return 0;
}

Copyright © 2019 - 2024 Jingwang Li

Powered by Hexo | Theme Hiker